Basics Elementary Middle School High School University Advanced
About This Page

This page introduces basic mathematical notation common to all departments.
For more advanced mathematics (vector analysis, Fourier transforms, etc.), see the Advanced Science/Engineering page.

Partial Derivatives

Partial Derivative Notation
Code:
$\displaystyle\frac{\partial f}{\partial x}$
Display:
$\displaystyle\frac{\partial f}{\partial x}$
Second-Order Partial Derivative
Code:
$\displaystyle\frac{\partial^2 f}{\partial x^2}$
Display:
$\displaystyle\frac{\partial^2 f}{\partial x^2}$
Mixed Partial Derivative
Code:
$\displaystyle\frac{\partial^2 f}{\partial x \partial y}$
Display:
$\displaystyle\frac{\partial^2 f}{\partial x \partial y}$
Jacobian
Code:
$\displaystyle J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$
Display:
$\displaystyle J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$

Various Types of Integration

Double Integral
Code:
$\displaystyle\iint_D f(x,y) \, dx \, dy$
Display:
$\displaystyle\iint_D f(x,y) \, dx \, dy$
Triple Integral
Code:
$\displaystyle\iiint_V f(x,y,z) \, dx \, dy \, dz$
Display:
$\displaystyle\iiint_V f(x,y,z) \, dx \, dy \, dz$
Line Integral
Code:
$\displaystyle\int_C \vec{F} \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt$
Display:
$\displaystyle\int_C \vec{F} \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt$
Surface Integral
Code:
$\displaystyle\iint_S \vec{F} \cdot d\vec{S} = \iint_D \vec{F} \cdot \vec{n} \, dS$
Display:
$\displaystyle\iint_S \vec{F} \cdot d\vec{S} = \iint_D \vec{F} \cdot \vec{n} \, dS$

Linear Algebra

Matrix Multiplication
Code:
$AB$
Display:
$AB$
Identity Matrix
Code:
$I$ または $E$
Display:
$I$ または $E$
Eigenvalue
Code:
$\lambda$
Display:
$\lambda$
Characteristic Equation
Code:
$\det(A - \lambda I) = 0$
Display:
$\det(A - \lambda I) = 0$
Trace
Code:
$\text{tr}(A)$
Display:
$\text{tr}(A)$
Rank
Code:
$\text{rank}(A)$
Display:
$\text{rank}(A)$

Probability and Statistics (University Level)

Conditional Probability
Code:
$\displaystyle P(A|B) = \frac{P(A \cap B)}{P(B)}$
Display:
$\displaystyle P(A|B) = \frac{P(A \cap B)}{P(B)}$
Bayes' Theorem
Code:
$\displaystyle P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
Display:
$\displaystyle P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
Covariance
Code:
$\text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$
Display:
$\text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$
Correlation Coefficient
Code:
$\displaystyle\rho = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$
Display:
$\displaystyle\rho = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$
Normal Distribution PDF
Code:
$\displaystyle f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
Display:
$\displaystyle f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
Central Limit Theorem
Code:
$\displaystyle \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{d} N(0, 1)$
Display:
$\displaystyle \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{d} N(0, 1)$
Moment Generating Function
Code:
$M_X(t) = E[e^{tX}]$
Display:
$M_X(t) = E[e^{tX}]$

Logical Symbols

Universal Quantifier
Code:
$\forall x \in A$ (for all x)
Display:
$\forall x \in A$ (for all x)
Existential Quantifier
Code:
$\exists x \in A$ (there exists an x)
Display:
$\exists x \in A$ (there exists an x)

Series Expansions

Taylor Series
Code:
$\displaystyle f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$
Display:
$\displaystyle f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$
Maclaurin Series
Code:
$\displaystyle f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$
Display:
$\displaystyle f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$

Vector Calculus

Gradient (grad)
Code:
$\displaystyle\nabla f = \mathrm{grad}\, f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$
Display:
$\displaystyle\nabla f = \mathrm{grad}\, f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$
Divergence (div)
Code:
$\displaystyle\nabla \cdot \vec{F} = \mathrm{div}\, \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$
Display:
$\displaystyle\nabla \cdot \vec{F} = \mathrm{div}\, \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$
Curl (rot)
Code:
$\displaystyle\nabla \times \vec{F} = \mathrm{rot}\, \vec{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)$
Display:
$\displaystyle\nabla \times \vec{F} = \mathrm{rot}\, \vec{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)$

Usage Examples in Reading Notes

Example 1: Partial Derivative Problem
Code:
p.56の問題: $f(x,y) = x^2 + 3xy + y^2$のとき、$\displaystyle\frac{\partial f}{\partial x} = 2x + 3y$、$\displaystyle\frac{\partial f}{\partial y} = 3x + 2y$
Display:
p.56の問題: $f(x,y) = x^2 + 3xy + y^2$のとき、$\displaystyle\frac{\partial f}{\partial x} = 2x + 3y$、$\displaystyle\frac{\partial f}{\partial y} = 3x + 2y$
Example 2: Eigenvalue Calculation
Code:
行列$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$の固有値は$\det(A - \lambda I) = 0$より$\lambda = 1, 3$
Display:
行列$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$の固有値は$\det(A - \lambda I) = 0$より$\lambda = 1, 3$
Example 3: Statistics Calculation
Code:
データ$X$が正規分布$N(50, 100)$に従うとき、平均$\mu = 50$、標準偏差$\sigma = 10$
Display:
データ$X$が正規分布$N(50, 100)$に従うとき、平均$\mu = 50$、標準偏差$\sigma = 10$
Common Symbol Reference
  • \partial → 偏微分記号∂
  • \iint, \iiint → 多重積分
  • \forall, \exists → 全称∀・存在∃
  • \det → 行列式det
  • \text{} → 数式内にテキスト